(54 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
[[category: LPC1768 Tutorials]]
 
[[category: LPC1768 Tutorials]]
 
 
 
 
 
=Objective=
 
=Objective=
In this tutorial we are going to discuss the serial communication using UART. For more info on UART/RS232 check 8051 tutorial.<br>
+
In this tutorial we are going to discuss the serial communication using UART.<br>
 +
For more info on UART/RS232 check [[A4.8051 Communication Protocols:UART, RS232|8051 tutorial]].<br>
 
LPC1768 has four inbuilt USARTs. We are going to discuss only UART0. After this tutorial you should be able to extend it to remaining three UARTS.<br>
 
LPC1768 has four inbuilt USARTs. We are going to discuss only UART0. After this tutorial you should be able to extend it to remaining three UARTS.<br>
After understating the basics of LPC1768 UART module, We will discuss how to use the ExploreEmbedded libraries to communicate with any of the UART devices.<br>
+
After understating the basics of LPC1768 UART module, We will discuss how to use the ExploreEmbedded libraries to communicate with any of the UART devices.<br><br><br><br>
 
+
 
+
 
+
 
+
  
 
=UART module=
 
=UART module=
 
UART module and registers.
 
UART module and registers.
LPC1768 has 4-UARTs numbering 0-3, similarly the pins are also named as RXD0-RXD3 and TXD0-TXD3.
+
LPC1768 has 4-UARTs numbering 0-3, similarly the pins are also named as RXD0-RXD3 and TXD0-TXD3.As the LPC1768 pins are multiplexed for multiple functionalities, first they have to be configured as UART pins.<br>
As the LPC1768 pins are multiplexed for multiple functionalities, first they have to be configured as UART pins.<br>
+
 
Below table shows the multiplexed UARTs pins.<br>
 
Below table shows the multiplexed UARTs pins.<br>
  
{| class="wikitable" style="text-align:center; background-color:#ABCDEF;margin: 1em auto 1em auto"
+
{| class="table table-striped table-hover table-condensed table-bordered"
 +
|-class="info"
 
!Port Pin|| Pin Number || PINSEL_FUNC_0 || PINSEL_FUNC_1 ||PINSEL_FUNC_2 ||PINSEL_FUNC_3
 
!Port Pin|| Pin Number || PINSEL_FUNC_0 || PINSEL_FUNC_1 ||PINSEL_FUNC_2 ||PINSEL_FUNC_3
 
|-
 
|-
Line 26: Line 19:
 
|P0.03 || 99 || GPIO || <b>RXD0</b> || ADC0[6] ||  
 
|P0.03 || 99 || GPIO || <b>RXD0</b> || ADC0[6] ||  
 
|-
 
|-
|P0.15 || 62 || GPIO || <b>TXD1</b> || SCK0 || SCK
+
|P2_0 || 48 || GPIO || PWM1[1] || <b>TXD1</b> ||
 
|-
 
|-
|P0.16 || 63 || GPIO || <b>RXD1</b> || SSEL0  || SSEL
+
|P2.1 || 49 || GPIO || PWM1[2] || <b>RXD1</b> ||  
 
|-
 
|-
|P0.10 || 48 || GPIO || <b>TXD2</b> || SDA2 || MAT3[0]
+
|P0.10 || 62 || GPIO || <b>TXD2</b> || SDA2|| MAT3[0]
 
|-
 
|-
|P0.11 || 49 || GPIO || <b>RXD2</b> || SCL2 || MAT3[1]
+
|P0.11 || 63 || GPIO || <b>RXD2</b> || SCL2|| MAT3[1]
 
|-
 
|-
|P4.28 || 82 || GPIO || RX_MCLK || MAT2[0] || <b>TXD3</b>
+
|P0.0 || 82 || GPIO || CAN1_Rx|| <b>TXD3 </b>|| SDA1
 
|-
 
|-
|P4.29 || 85 || GPIO || TX_MCLK || MAT2[1] || <b>RXD3</b>   
+
|P0.1 || 85 || GPIO || CAN1_Tx|| <b>RXD3</b>  ||  SCL1
 
|}
 
|}
 +
<br><br><br><br>
  
 
=UART Registers  =
 
=UART Registers  =
The below table shows the registers associated with LPC1768 ADC.<br>
+
The below table shows the registers associated with LPC1768 UART.<br>
We are going to focus only on ADCR and ADGDR as these are sufficient for simple A/D conversion.<br>
+
{| class="table table-striped table-hover table-condensed table-bordered"
However once you are familer with LPC1768 ADC, you can explore the other features and the associated registers.
+
|-class="info"
{| class="wikitable" style="text-align:left; background-color:#ABCDEF;"
+
 
!Register || Description
 
!Register || Description
 
|-
 
|-
Line 62: Line 55:
 
=UART Register Configuration=
 
=UART Register Configuration=
 
Now lets see how to configure the individual registers for UART communication.
 
Now lets see how to configure the individual registers for UART communication.
=====FCR ( FIFO Control Register )=====
+
==FCR ( FIFO Control Register )==
 
LPC1768 has inbuilt 16byte FIFO for Receiver/Transmitter. Thus it can store 16-bytes of data received on UART without overwriting. If the data is not read before the Queue(FIFO) is filled then the new data will be lost and the OVERRUN error bit will be set.
 
LPC1768 has inbuilt 16byte FIFO for Receiver/Transmitter. Thus it can store 16-bytes of data received on UART without overwriting. If the data is not read before the Queue(FIFO) is filled then the new data will be lost and the OVERRUN error bit will be set.
{| class="wikitable" style="text-align:center; background-color:#ABCDEF;margin: 1em auto 1em auto"
+
{| class="table table-striped table-hover table-condensed table-bordered"
!colspan = '9'|ADCR
+
|-class="info"
 +
|FCR
 
|-
 
|-
 
|31:8|| 7:6 ||  5:4  || 3 || 2 || 1 || 0   
 
|31:8|| 7:6 ||  5:4  || 3 || 2 || 1 || 0   
 
|-
 
|-
|RESERVED|| RX TRIGGER||  RESERVED  || DMA MODE || TX RIFO RESET  || RX RIFO RESET || FIFO ENABLE
+
|RESERVED|| RX TRIGGER||  RESERVED  || DMA MODE || TX FIFO RESET  || RX FIFO RESET || FIFO ENABLE
 
|}
 
|}
  
Line 97: Line 91:
 
01-- Trigger level 1 (4 characters or 0x04)<br>
 
01-- Trigger level 1 (4 characters or 0x04)<br>
 
10-- Trigger level 2 (8 characters or 0x08)<br>
 
10-- Trigger level 2 (8 characters or 0x08)<br>
11-- Trigger level 3 (14 characters or 0x0E)<br><br><br>
+
11-- Trigger level 3 (14 characters or 0x0E)
 +
<br><br><br><br><br>
  
=====LCR ( Line Control Register )=====
+
==LCR ( Line Control Register )==
 
This register is used for defining the UART frame format ie. Number of Data bits, STOP bits etc.
 
This register is used for defining the UART frame format ie. Number of Data bits, STOP bits etc.
{| class="wikitable" style="text-align:center; background-color:#ABCDEF;margin: 1em auto 1em auto"
+
{| class="table table-striped table-hover table-condensed table-bordered"
!colspan = '9'|LCR  
+
|-class="info"
 +
|LCR  
 
|-
 
|-
 
|31:8|| 7 || 6 || 5:4 || 3 || 2 || 1:0   
 
|31:8|| 7 || 6 || 5:4 || 3 || 2 || 1:0   
Line 141: Line 137:
 
This bit is used to enable the access to divisor latch.<br>
 
This bit is used to enable the access to divisor latch.<br>
 
0-- Disable access to divisor latch<br>
 
0-- Disable access to divisor latch<br>
0-- Enable access to divisor latch<br><br><br>
+
0-- Enable access to divisor latch
 +
<br><br><br><br><br>
  
 
+
==LSR (Line Status Register)==
 
+
====LSR (Line Status Register)====
+
 
The is a read-only register that provides status information of the UART TX and RX blocks.
 
The is a read-only register that provides status information of the UART TX and RX blocks.
{| class="wikitable" style="text-align:center; background-color:#ABCDEF;margin: 1em auto 1em auto"
+
{| class="table table-striped table-hover table-condensed table-bordered"
!colspan = '9'|LSR  
+
|-class="info"
 +
|LSR  
 
|-
 
|-
 
|31:8 || 7 || 6 || 5 || 4 || 3 || 2 || 1|| 0   
 
|31:8 || 7 || 6 || 5 || 4 || 3 || 2 || 1|| 0   
Line 197: Line 193:
 
1-- RBR contains at least one RX error.<br><br><br>
 
1-- RBR contains at least one RX error.<br><br><br>
  
 
+
==TER (Transmitter Enable register)==
 
+
====TER (Transmitter Enable register)====
+
 
This register is used to Enable/Disable the transmission
 
This register is used to Enable/Disable the transmission
{| class="wikitable" style="text-align:center; background-color:#ABCDEF;margin: 1em auto 1em auto"
+
{| class="table table-striped table-hover table-condensed table-bordered"
!colspan = '9'|TER  
+
|-class="info"
 +
|TER
 
|-
 
|-
|31:8 || 7 || 6-0   
+
|31:8|| 7 || 6-0   
 
|-
 
|-
|Reserved || TXEN || Reserved
+
|Reserved|| TXEN || Reserved
 
|}       
 
|}       
 
        
 
        
Line 216: Line 211:
 
*Note: By default this bit will be set after Reset.<br><br><br>
 
*Note: By default this bit will be set after Reset.<br><br><br>
  
 
+
==Baudrate Calculation==
 
+
====Baudrate Calculation====
+
 
LPC1768 generates the baud rate depending on the values of DLM,DLL.<br>  
 
LPC1768 generates the baud rate depending on the values of DLM,DLL.<br>  
 
<b>Baudrate = PCLK/ (16 * ( 256 * DLM + DLL) * (1+ DivAddVal/MulVal))</b><br>
 
<b>Baudrate = PCLK/ (16 * ( 256 * DLM + DLL) * (1+ DivAddVal/MulVal))</b><br>
Line 227: Line 220:
 
(Refer data sheet for more info)
 
(Refer data sheet for more info)
  
{| class="wikitable" style="text-align:center; background-color:#ABCDEF;margin: 1em auto 1em auto"
+
{| class="table table-striped table-hover table-condensed table-bordered"
!UART_PCLK  || PCLK
+
|-class="info"
 +
|UART_PCLK  || PCLK
 
|-
 
|-
 
|0|| SystemFreq/4
 
|0|| SystemFreq/4
Line 244: Line 238:
 
Using the above parameters , DLL/DLM is calculated as below.<br>
 
Using the above parameters , DLL/DLM is calculated as below.<br>
 
<b>(256 * DLL + DLM) = PCLK / (16* Baudrate).</b><br><br><br>
 
<b>(256 * DLL + DLM) = PCLK / (16* Baudrate).</b><br><br><br>
 
====Some other registers====
 
 
<br><br><br>
 
 
=Schematic=
 
[[File:Schematic LPC1768 ADC.svg|x500px|center|Schematic]]<br><br>
 
 
 
  
  
Line 268: Line 253:
  
 
<b>Code sniffet:</b>
 
<b>Code sniffet:</b>
<syntaxhighlight>
+
<html>
void uart_init(uint32_t baudrate)
+
<script src="https://gist.github.com/Amritach/35437ef514c0ad0f9089.js"></script>
{
+
</html>
    uint32_t var_UartPclk_u32,var_Pclk_u32,var_RegValue_u32;
+
 
+
    LPC_PINCON->PINSEL0 &= ~0x000000F0;
+
    LPC_PINCON->PINSEL0 |= 0x00000050;            // Enable TxD0 P0.2 and p0.3
+
 
+
    LPC_UART0->FCR = (1<<SBIT_FIFO) | (1<<SBIT_RxFIFO) | (1<<SBIT_TxFIFO); // Enable FIFO and reset Rx/Tx FIFO buffers   
+
    LPC_UART0->LCR = (0x03<<SBIT_WordLenght) | (1<<SBIT_DLAB); // 8bit data, 1Stop bit, No parity
+
 
+
 
+
    /** Baud Rate Calculation :
+
      PCLKSELx registers contains the PCLK info for all the clock dependent peripherals.
+
      Bit6,Bit7 contains the Uart Clock(ie.UART_PCLK) information.
+
      The UART_PCLK and the actual Peripheral Clock(PCLK) is calculated as below.
+
      (Refer data sheet for more info)
+
     
+
      UART_PCLK    PCLK
+
        0x00      SystemFreq/4       
+
        0x01      SystemFreq
+
        0x02      SystemFreq/2
+
        0x03      SystemFreq/8 
+
    **/
+
 
+
    var_UartPclk_u32 = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
+
 
+
    switch( var_UartPclk_u32 )
+
    {
+
          case 0x00:
+
            var_Pclk_u32 = SystemFrequency/4;
+
            break;
+
          case 0x01:
+
            var_Pclk_u32 = SystemFrequency;
+
            break;
+
          case 0x02:
+
            var_Pclk_u32 = SystemFrequency/2;
+
            break;
+
          case 0x03:
+
            var_Pclk_u32 = SystemFrequency/8;
+
            break;
+
    }   
+
 
+
    var_RegValue_u32 = ( var_Pclk_u32 / (16 * baudrate ));
+
    LPC_UART0->DLL =  var_RegValue_u32 & 0xFF;
+
    LPC_UART0->DLM = (var_RegValue_u32 >> 0x08) & 0xFF;
+
 
+
    util_BitClear(LPC_UART0->LCR,(SBIT_DLAB));  // Clear DLAB after setting DLL,DLM
+
}
+
</syntaxhighlight>
+
 
<br><br>
 
<br><br>
  
Line 324: Line 262:
 
#Step2: Load the new char to be transmitted into THR.<br>
 
#Step2: Load the new char to be transmitted into THR.<br>
 
<b>Code snippet</b>
 
<b>Code snippet</b>
<syntaxhighlight>
+
<html>
void uart_TxChar(char ch)
+
<script src="https://gist.github.com/Amritach/50b91b48e5722b03ad4c.js"></script>
{
+
</html>
    while(util_IsBitCleared(LPC_UART0->LSR,SBIT_THRE)); // Wait for Previous transmission
+
    LPC_UART0->THR=ch;                        // Load the data to be transmitted
+
}
+
</syntaxhighlight>
+
 
<br><br>
 
<br><br>
  
Line 337: Line 271:
 
#Step2: Copy the received data from receive buffer(RBR).<br>
 
#Step2: Copy the received data from receive buffer(RBR).<br>
 
<b>Code snippet</b>
 
<b>Code snippet</b>
<syntaxhighlight>
+
<html>
char uart_RxChar()
+
<script src="https://gist.github.com/Amritach/c6b329d11c5406347279.js"></script>
{
+
</html>
char ch;
+
    while(util_IsBitCleared(LPC_UART0->LSR,SBIT_RDR));  // Wait till the data is received
+
    ch = LPC_UART0->RBR;                              // Read received data   
+
return ch;
+
}
+
</syntaxhighlight>
+
  
 
=Code=
 
=Code=
Below is the code for transmitting and receiving chars at 9600 baud<br>
 
  
<syntaxhighlight>
 
#include <lpc17xx.h>
 
#include "stdutils.h"
 
  
#define SBIT_WordLenght    0x00u
+
===Example 1===
#define SBIT_DLAB            0x07u
+
Below is the code for transmitting and receiving chars at 9600 baud<br>
#define SBIT_FIFO              0x00u
+
<html>
#define SBIT_RxFIFO          0x01u
+
<script src="https://gist.github.com/SaheblalBagwan/dfa8847f40f1cf14f20fae2bb2a6d83c.js"></script>
#define SBIT_TxFIFO          0x02u
+
</html><br><br><br>
  
#define SBIT_RDR              0x00u
+
===Using Explore Embedded Libraries===
#define SBIT_THRE            0x05u
+
 
+
 
+
 
+
/* Function to initialize the UART0 at specifief baud rate */
+
void uart_init(uint32_t baudrate)
+
{
+
    uint32_t var_UartPclk_u32,var_Pclk_u32,var_RegValue_u32;
+
 
+
    LPC_PINCON->PINSEL0 &= ~0x000000F0;
+
    LPC_PINCON->PINSEL0 |= 0x00000050;            // Enable TxD0 P0.2 and p0.3
+
 
+
    LPC_UART0->FCR = (1<<SBIT_FIFO) | (1<<SBIT_RxFIFO) | (1<<SBIT_TxFIFO); // Enable FIFO and reset Rx/Tx FIFO buffers   
+
    LPC_UART0->LCR = (0x03<<SBIT_WordLenght) | (1<<SBIT_DLAB); // 8bit data, 1Stop bit, No parity
+
 
+
 
+
    /** Baud Rate Calculation :
+
      PCLKSELx registers contains the PCLK info for all the clock dependent peripherals.
+
      Bit6,Bit7 contains the Uart Clock(ie.UART_PCLK) information.
+
      The UART_PCLK and the actual Peripheral Clock(PCLK) is calculated as below.
+
      (Refer data sheet for more info)
+
     
+
      UART_PCLK    PCLK
+
        0x00      SystemFreq/4       
+
        0x01      SystemFreq
+
        0x02      SystemFreq/2
+
        0x03      SystemFreq/8 
+
    **/
+
 
+
    var_UartPclk_u32 = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
+
 
+
    switch( var_UartPclk_u32 )
+
    {
+
          case 0x00:
+
            var_Pclk_u32 = SystemFrequency/4;
+
            break;
+
          case 0x01:
+
            var_Pclk_u32 = SystemFrequency;
+
            break;
+
          case 0x02:
+
            var_Pclk_u32 = SystemFrequency/2;
+
            break;
+
          case 0x03:
+
            var_Pclk_u32 = SystemFrequency/8;
+
            break;
+
    }
+
   
+
 
+
    var_RegValue_u32 = ( var_Pclk_u32 / (16 * baudrate ));
+
    LPC_UART0->DLL =  var_RegValue_u32 & 0xFF;
+
    LPC_UART0->DLM = (var_RegValue_u32 >> 0x08) & 0xFF;
+
 
+
    util_BitClear(LPC_UART0->LCR,(SBIT_DLAB));  // Clear DLAB after setting DLL,DLM
+
}
+
 
+
 
+
/* Function to transmit a char */
+
void uart_TxChar(char ch)
+
{
+
    while(util_IsBitCleared(LPC_UART0->LSR,SBIT_THRE)); // Wait for Previous transmission
+
    LPC_UART0->THR=ch;                        // Load the data to be transmitted
+
}
+
 
+
 
+
/* Function to Receive a char */
+
char uart_RxChar()
+
{
+
char ch;
+
    while(util_IsBitCleared(LPC_UART0->LSR,SBIT_RDR));  // Wait till the data is received
+
    ch = LPC_UART0->RBR;                              // Read received data   
+
return ch;
+
}
+
+
 
+
 
+
void main()
+
{
+
  char ch,a[]="\n\rExploreEmbedded";
+
  int i;
+
 
+
  SystemInit();
+
  uart_init(9600);  // Initialize the UART0 for 9600 baud rate
+
 
+
  uart_TxChar('h'); //Transmit "hello" char by char
+
  uart_TxChar('e');
+
  uart_TxChar('l');
+
  uart_TxChar('l');
+
  uart_TxChar('o');
+
 
+
 
+
  for(i=0;a[i];i++)  //transmit a predefined string
+
    uart_TxChar(a[i]);
+
 
+
 
+
    while(1)
+
    {
+
      //Finally receive a char and transmit it infinitely
+
      ch = uart_RxChar();
+
      uart_TxChar(ch);
+
    }     
+
}
+
</syntaxhighlight><br><br><br>
+
 
+
=Using Explore Embedded Libraries=
+
 
In the above tutorial we discussed how to configure and use the inbuilt LPC1768 UART.<br>
 
In the above tutorial we discussed how to configure and use the inbuilt LPC1768 UART.<br>
 
Now we will see how to use the ExploreEmbededd UART libraries to communicate on all the four UART channels.<br>
 
Now we will see how to use the ExploreEmbededd UART libraries to communicate on all the four UART channels.<br>
 
For this you have to include the uart.c/uart.h files and associated gpio/stdutils files.<br>
 
For this you have to include the uart.c/uart.h files and associated gpio/stdutils files.<br>
  
As LPC1768 has four inbuilt UART channels, the interfaces are prefixed with channel number as shown below.<br>
+
As LPC1768 has four inbuilt UART channels, the interfaces are suffixed with channel number as shown below.<br>  
UART0_Init()<br>
+
UART1_Init()<br>
+
UART2_Init()<br>
+
UART3_Init()<br><br>
+
 
+
Similarly all other functions are also suffixed with channel numbers.<br>
+
 
UART0_Printf()<br>
 
UART0_Printf()<br>
 
UART1_Printf()<br>
 
UART1_Printf()<br>
Line 483: Line 297:
 
#Note:Refer the uart.h file for more info.
 
#Note:Refer the uart.h file for more info.
  
<syntaxhighlight>   
+
<html>   
#include "uart.h"
+
<script src="https://gist.github.com/SaheblalBagwan/7db91d1895e3bfe9534c8f657af89a79.js"></script>
 +
</html>
  
void main()
+
=Testing=
{
+
  
    SystemInit();
+
==Using the Terminal Software==
 +
After generating the hex/bin file, flash it to the controller. Now connect the LPC1768 to your system using a Usb to Serial converter.
  
    UART_Init(0,9600);  // Initilaize All the UARTs at 9600 Baud rate
+
[[File:Lpc1768SerialConnection.JPG|x400px]]<br><br>
    UART_Init(1,9600);  // Both UART_Init(0,9600) and UART0_Init(9600) are same
+
    UART2_Init(9600); // Internally UART0_Init() is mapped to UART_Init()
+
    UART3_Init(9600); // You can notice First two(0,1) are called with parameter other two(2,3) with suffix
+
  
    /*Directly use the Channel suffixed interface UART0_Printf, where suffix "0" specifies the UART channel*/
+
Open the terminal software , select the COM port, set baud rate and hit the connect button.
    UART0_Printf("Channel Zero %4d, %2x", 1234, 0xabcd);
+
    UART1_Printf("Channel One %4d,  %2x", 5678, 0xdd);
+
    UART2_Printf("Channel Two %4d,  %2x", 3421, 0xee);
+
    UART3_Printf("Channel Three %4d, %2x", 8912, 0xff);
+
  
 +
<html>
 +
<img src=https://www.exploreembedded.com/wiki/images/8/8f/TerminalSetUp.png class="img-responsive">
 +
</html><br><br>
  
    /*Use the standard interface by passing the channel number as first paramater*/
+
==Using The Keil Simulator==
    UART_Printf(0,"Channel Zero %4d, %2x", 1234, 0xabcd);
+
Code can be tested on the Keil simulator as well. For this the target memory options needs to be set to default as shown below.
    UART_Printf(1,"Channel One %4d, %2x",  5678, 0xdd);
+
<html>
    UART_Printf(2,"Channel Two %4d, %2x",  3421, 0xee);
+
<img src=https://www.exploreembedded.com/wiki/images/d/d5/UartConfigOtpions.png class="img-responsive">
    UART_Printf(3,"Channel Three %4d, %2x",8912, 0xff);
+
</html>
 +
 
 +
 
 +
 
 +
 
 +
Now Rebuild the project and Run the code using the Keil simulator as shown below.
 +
<html>
 +
<img src=https://www.exploreembedded.com/wiki/images/0/00/Lpc1768_Uart_Simulator.png class="img-responsive">
 +
</html>
 +
<br><br>
  
    while(1);
+
= Downloads=
}
+
Download the complete project folder from the below link:
</syntaxhighlight>  
+
https://codeload.github.com/ExploreEmbedded/Explore-Cortex-M3-LPC1768-Stick-DVB-14001/zip/master<br><br><br><br>
 +
 
 +
Have a opinion, suggestion , question or feedback about the article let it out here!
 
{{DISQUS}}
 
{{DISQUS}}

Latest revision as of 11:59, 27 July 2016

Objective

In this tutorial we are going to discuss the serial communication using UART.
For more info on UART/RS232 check 8051 tutorial.
LPC1768 has four inbuilt USARTs. We are going to discuss only UART0. After this tutorial you should be able to extend it to remaining three UARTS.
After understating the basics of LPC1768 UART module, We will discuss how to use the ExploreEmbedded libraries to communicate with any of the UART devices.



UART module

UART module and registers. LPC1768 has 4-UARTs numbering 0-3, similarly the pins are also named as RXD0-RXD3 and TXD0-TXD3.As the LPC1768 pins are multiplexed for multiple functionalities, first they have to be configured as UART pins.
Below table shows the multiplexed UARTs pins.

Port Pin Pin Number PINSEL_FUNC_0 PINSEL_FUNC_1 PINSEL_FUNC_2 PINSEL_FUNC_3
P0.02 98 GPIO TXD0 ADC0[7]
P0.03 99 GPIO RXD0 ADC0[6]
P2_0 48 GPIO PWM1[1] TXD1
P2.1 49 GPIO PWM1[2] RXD1
P0.10 62 GPIO TXD2 SDA2 MAT3[0]
P0.11 63 GPIO RXD2 SCL2 MAT3[1]
P0.0 82 GPIO CAN1_Rx TXD3 SDA1
P0.1 85 GPIO CAN1_Tx RXD3 SCL1





UART Registers

The below table shows the registers associated with LPC1768 UART.

Register Description
RBR Contains the recently received Data
THR Contains the data to be transmitted
FCR FIFO Control Register
LCR Controls the UART frame formatting(Number of Data Bits, Stop bits)
DLL Least Significant Byte of the UART baud rate generator value.
DLM Most Significant Byte of the UART baud rate generator value.



UART Register Configuration

Now lets see how to configure the individual registers for UART communication.

FCR ( FIFO Control Register )

LPC1768 has inbuilt 16byte FIFO for Receiver/Transmitter. Thus it can store 16-bytes of data received on UART without overwriting. If the data is not read before the Queue(FIFO) is filled then the new data will be lost and the OVERRUN error bit will be set.

FCR
31:8 7:6 5:4 3 2 1 0
RESERVED RX TRIGGER RESERVED DMA MODE TX FIFO RESET RX FIFO RESET FIFO ENABLE

Bit 0 – FIFO:
This bit is used to enable/disable the FIFO for the data received/transmitted.
0--FIFO is Disabled.
1--FIFO is Enabled for both Rx and Tx.

Bit 1 – RX_FIFO:
This is used to clear the 16-byte Rx FIFO.
0--No impact.
1--CLears the 16-byte Rx FIFO and the resets the FIFO pointer.

Bit 2 – Tx_FIFO:
This is used to clear the 16-byte Tx FIFO.
0--No impact.
1--Clears the 16-byte Tx FIFO and the resets the FIFO pointer.

Bit 3 – DMA_MODE:
This is used for Enabling/Disabling DMA mode.
0--Disables the DMA.
1--Enables DMA only when the FIFO(bit-0) bit is SET.

Bit 7:6 – Rx_TRIGGER:
This bit is used to select the number of bytes of the receiver data to be written so as to enable the interrupt/DMA.
00-- Trigger level 0 (1 character or 0x01)
01-- Trigger level 1 (4 characters or 0x04)
10-- Trigger level 2 (8 characters or 0x08)
11-- Trigger level 3 (14 characters or 0x0E)




LCR ( Line Control Register )

This register is used for defining the UART frame format ie. Number of Data bits, STOP bits etc.

LCR
31:8 7 6 5:4 3 2 1:0
Reserved DLAB Break COntrol Parity Select Parity Enable Stop Bit Select Word Length Select

Bit 1:0 – WLS : WordLenghtSelect
These two bits are used to select the character length
00-- 5-bit character length
01-- 6-bit character length
10-- 7-bit character length
11-- 8-bit character length

Bit 2 – Stop Bit Selection:
This bit is used to select the number(1/2) of stop bits
0-- 1 Stop bit
1-- 2 Stop Bits

Bit 3 – Parity Enable:
This bit is used to Enable or Disable the Parity generation and checking.
0-- Disable parity generation and checking.
1-- Enable parity generation and checking.

Bit 5:4 – Parity Selection:
These two bits will be used to select the type of parity.
00-- Odd parity. Number of 1s in the transmitted character and the attached parity bit will be odd.
01-- Even Parity. Number of 1s in the transmitted character and the attached parity bit will be even.
10-- Forced "1" stick parity.
11-- Forced "0" stick parity

Bit 6 – Break Control
0-- Disable break transmission.
1-- Enable break transmission. Output pin UARTn TXD is forced to logic 0


Bit 8 – DLAB: Divisor Latch Access Bit
This bit is used to enable the access to divisor latch.
0-- Disable access to divisor latch
0-- Enable access to divisor latch




LSR (Line Status Register)

The is a read-only register that provides status information of the UART TX and RX blocks.

LSR
31:8 7 6 5 4 3 2 1 0
Reserved RXFE TEMT THRE BI FE PE OE RDR

Bit 0 – RDR: Receive Data Ready
This bit will be set when there is a received data in RBR register. This bit will be automatically cleared when RBR is empty.
0-- The UARTn receiver FIFO is empty.
1-- The UARTn receiver FIFO is not empty.

Bit 1 – OE: Overrun Error
The overrun error condition is set when the UART Rx FIFO is full and a new character is received. In this case, the UARTn RBR FIFO will not be overwritten and the character in the UARTn RSR will be lost.
0-- No overrun
1-- Buffer over run

Bit 2 – PE: Parity Error
This bit is set when the receiver detects a error in the Parity.
0-- No Parity Error
1-- Parity Error

Bit 3 – FE: Framing Error
This bit is set when there is error in the STOP bit(LOGIC 0)
0-- No Framing Error
1-- Framing Error

Bit 4 – BI: Break Interrupt
This bit is set when the RXDn is held in the spacing state (all zeroes) for one full character transmission
0-- No Break interrupt
1-- Break Interrupt detected.

Bit 5 – THRE: Transmitter Holding Register Empty
THRE is set immediately upon detection of an empty THR. It is automatically cleared when the THR is written.
0-- THR register is Empty
1-- THR has valid data to be transmitted

Bit 6 – TEMT: Transmitter Empty
TEMT is set when both UnTHR and UnTSR are empty; TEMT is cleared when any of them contain valid data.
0-- THR and/or the TSR contains valid data.
1-- THR and the TSR are empty.


Bit 7 – RXFE: Error in Rx FIFO
This bit is set when the received data is affected by Framing Error/Parity Error/Break Error.
0-- RBR contains no UARTn RX errors.
1-- RBR contains at least one RX error.


TER (Transmitter Enable register)

This register is used to Enable/Disable the transmission

TER
31:8 7 6-0
Reserved TXEN Reserved


Bit 7 – TXEN: Trsnamitter Enable
When this bit is 1, the data written to the THR is output on the TXD pin.
If this bit is cleared to 0 while a character is being sent, the transmission of that character is completed, but no further characters are sent until this bit is set again.
In other words, a 0 in this bit blocks the transfer of characters.

  • Note: By default this bit will be set after Reset.


Baudrate Calculation

LPC1768 generates the baud rate depending on the values of DLM,DLL.
Baudrate = PCLK/ (16 * ( 256 * DLM + DLL) * (1+ DivAddVal/MulVal))

Getting the PCLK value.
PCLKSELx registers contains the PCLK info for all the clock dependent peripherals in which Bit6,Bit7 contains the Uart Clock(ie.UART_PCLK) information.
The UART_PCLK and the actual Peripheral Clock(PCLK) is calculated as below.
(Refer data sheet for more info)

UART_PCLK PCLK
0 SystemFreq/4
1 SystemFreq
2 SystemFreq/2
3 SystemFreq/8


DivAddVal/MulVal == 0

Using the above parameters , DLL/DLM is calculated as below.
(256 * DLL + DLM) = PCLK / (16* Baudrate).



Steps for Configuring UART0

Below are the steps for configuring the UART0.

  1. Step1: Configure the GPIO pin for UART0 function using PINSEL register.
  2. Step2: Configure the FCR for enabling the FIXO and Reste both the Rx/Tx FIFO.
  3. Step3: Configure LCR for 8-data bits, 1 Stop bit, Disable Parity and Enable DLAB.
  4. Step4: Get the PCLK from PCLKSELx register 7-6 bits.
  5. Step5: Calculate the DLM,DLL vaues for required baudrate from PCLK.
  6. Step6: Updtae the DLM,DLL with the calculated values.
  7. Step6: Finally clear DLAB to disable the access to DLM,DLL.

After this the UART will be ready to Transmit/Receive Data at the specified baudrate.

Code sniffet:

Steps for transmitting a char

  1. Step1: Wait till the previous char is transmitted ie. till THRE becomes high.
  2. Step2: Load the new char to be transmitted into THR.

Code snippet

Steps for Receiving a char

  1. Step1: Wait till the a char is received ie. till RDR becomes high.
  2. Step2: Copy the received data from receive buffer(RBR).

Code snippet

Code

Example 1

Below is the code for transmitting and receiving chars at 9600 baud



Using Explore Embedded Libraries

In the above tutorial we discussed how to configure and use the inbuilt LPC1768 UART.
Now we will see how to use the ExploreEmbededd UART libraries to communicate on all the four UART channels.
For this you have to include the uart.c/uart.h files and associated gpio/stdutils files.

As LPC1768 has four inbuilt UART channels, the interfaces are suffixed with channel number as shown below.
UART0_Printf()
UART1_Printf()
UART2_Printf()
UART3_Printf()

  1. Note:Refer the uart.h file for more info.

Testing

Using the Terminal Software

After generating the hex/bin file, flash it to the controller. Now connect the LPC1768 to your system using a Usb to Serial converter.

Lpc1768SerialConnection.JPG

Open the terminal software , select the COM port, set baud rate and hit the connect button.



Using The Keil Simulator

Code can be tested on the Keil simulator as well. For this the target memory options needs to be set to default as shown below.



Now Rebuild the project and Run the code using the Keil simulator as shown below.

Downloads

Download the complete project folder from the below link: https://codeload.github.com/ExploreEmbedded/Explore-Cortex-M3-LPC1768-Stick-DVB-14001/zip/master



Have a opinion, suggestion , question or feedback about the article let it out here!